Close Menu

    Subscribe to Updates

    Get the latest news from tastytech.

    What's Hot

    How does the cutoff of Starlink terminals affect Russia’s moves in Ukraine? | Russia-Ukraine war News

    February 10, 2026

    7 Python EDA Tricks to Find and Fix Data Issues

    February 10, 2026

    How to watch The Artful Dodger season 2 online from anywhere

    February 10, 2026
    Facebook X (Twitter) Instagram
    Facebook X (Twitter) Instagram
    tastytech.intastytech.in
    Subscribe
    • AI News & Trends
    • Tech News
    • AI Tools
    • Business & Startups
    • Guides & Tutorials
    • Tech Reviews
    • Automobiles
    • Gaming
    • movies
    tastytech.intastytech.in
    Home»AI News & Trends»How AI could speed the development of RNA vaccines and other RNA therapies | MIT News
    How AI could speed the development of RNA vaccines and other RNA therapies | MIT News
    AI News & Trends

    How AI could speed the development of RNA vaccines and other RNA therapies | MIT News

    gvfx00@gmail.comBy gvfx00@gmail.comNovember 1, 2025No Comments5 Mins Read
    Share
    Facebook Twitter LinkedIn Pinterest Email



    Using artificial intelligence, MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies.

    After training a machine-learning model to analyze thousands of existing delivery particles, the researchers used it to predict new materials that would work even better. The model also enabled the researchers to identify particles that would work well in different types of cells, and to discover ways to incorporate new types of materials into the particles.

    “What we did was apply machine-learning tools to help accelerate the identification of optimal ingredient mixtures in lipid nanoparticles to help target a different cell type or help incorporate different materials, much faster than previously was possible,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and the senior author of the study.

    This approach could dramatically speed the process of developing new RNA vaccines, as well as therapies that could be used to treat obesity, diabetes, and other metabolic disorders, the researchers say.

    Alvin Chan, a former MIT postdoc who is now an assistant professor at Nanyang Technological University, and Ameya Kirtane, a former MIT postdoc who is now an assistant professor at the University of Minnesota, are the lead authors of the new open-access study, which appears today in Nature Nanotechnology.

    Particle predictions

    RNA vaccines, such as the vaccines for SARS-CoV-2, are usually packaged in lipid nanoparticles (LNPs) for delivery. These particles protect mRNA from being broken down in the body and help it to enter cells once injected.

    Creating particles that handle these jobs more efficiently could help researchers to develop even more effective vaccines. Better delivery vehicles could also make it easier to develop mRNA therapies that encode genes for proteins that could help to treat a variety of diseases.

    In 2024, Traverso’s lab launched a multiyear research program, funded by the U.S. Advanced Research Projects Agency for Health (ARPA-H), to develop new ingestible devices that could achieve oral delivery of RNA treatments and vaccines.

    “Part of what we’re trying to do is develop ways of producing more protein, for example, for therapeutic applications. Maximizing the efficiency is important to be able to boost how much we can have the cells produce,” Traverso says.

    A typical LNP consists of four components — a cholesterol, a helper lipid, an ionizable lipid, and a lipid that is attached to polyethylene glycol (PEG). Different variants of each of these components can be swapped in to create a huge number of possible combinations. Changing up these formulations and testing each one individually is very time-consuming, so Traverso, Chan, and their colleagues decided to turn to artificial intelligence to help speed up the process.

    “Most AI models in drug discovery focus on optimizing a single compound at a time, but that approach doesn’t work for lipid nanoparticles, which are made of multiple interacting components,” Chan says. “To tackle this, we developed a new model called COMET, inspired by the same transformer architecture that powers large language models like ChatGPT. Just as those models understand how words combine to form meaning, COMET learns how different chemical components come together in a nanoparticle to influence its properties — like how well it can deliver RNA into cells.”

    To generate training data for their machine-learning model, the researchers created a library of about 3,000 different LNP formulations. The team tested each of these 3,000 particles in the lab to see how efficiently they could deliver their payload to cells, then fed all of this data into a machine-learning model.

    After the model was trained, the researchers asked it to predict new formulations that would work better than existing LNPs. They tested those predictions by using the new formulations to deliver mRNA encoding a fluorescent protein to mouse skin cells grown in a lab dish. They found that the LNPs predicted by the model did indeed work better than the particles in the training data, and in some cases better than LNP formulations that are used commercially.

    Accelerated development

    Once the researchers showed that the model could accurately predict particles that would efficiently deliver mRNA, they began asking additional questions. First, they wondered if they could train the model on nanoparticles that incorporate a fifth component: a type of polymer known as branched poly beta amino esters (PBAEs).

    Research by Traverso and his colleagues has shown that these polymers can effectively deliver nucleic acids on their own, so they wanted to explore whether adding them to LNPs could improve LNP performance. The MIT team created a set of about 300 LNPs that also include these polymers, which they used to train the model. The resulting model could then predict additional formulations with PBAEs that would work better.

    Next, the researchers set out to train the model to make predictions about LNPs that would work best in different types of cells, including a type of cell called Caco-2, which is derived from colorectal cancer cells. Again, the model was able to predict LNPs that would efficiently deliver mRNA to these cells.

    Lastly, the researchers used the model to predict which LNPs could best withstand lyophilization — a freeze-drying process often used to extend the shelf-life of medicines.

    “This is a tool that allows us to adapt it to a whole different set of questions and help accelerate development. We did a large training set that went into the model, but then you can do much more focused experiments and get outputs that are helpful on very different kinds of questions,” Traverso says.

    He and his colleagues are now working on incorporating some of these particles into potential treatments for diabetes and obesity, which are two of the primary targets of the ARPA-H funded project. Therapeutics that could be delivered using this approach include GLP-1 mimics with similar effects to Ozempic.

    This research was funded by the GO Nano Marble Center at the Koch Institute, the Karl van Tassel Career Development Professorship, the MIT Department of Mechanical Engineering, Brigham and Women’s Hospital, and ARPA-H.

    Table of Contents

    Toggle
      • Related posts:
    • A faster problem-solving tool that guarantees feasibility | MIT News
    • Study Finds AI-Written Articles No Longer Outnumber Real Writers on the Web
    • 3 Questions: How AI could optimize the power grid | MIT News

    Related posts:

    Study Finds AI-Written Articles No Longer Outnumber Real Writers on the Web

    Exploring how AI will shape the future of work | MIT News

    Ai Flirt Chat Generator With Photos

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThailand becomes one of the first in Asia to get the Sora app
    Next Article Minisforum’s new MS-02 Ultra mini PC offers desktop power for serious multitasking workloads
    gvfx00@gmail.com
    • Website

    Related Posts

    AI News & Trends

    Subscription Plans and Core Features Explained

    February 10, 2026
    AI News & Trends

    37 AI Companions Statistics in 2025

    February 9, 2026
    AI News & Trends

    AI at Home Statistics

    February 9, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    BMW Will Put eFuel In Cars Made In Germany From 2028

    October 14, 202511 Views

    Best Sonic Lego Deals – Dr. Eggman’s Drillster Gets Big Price Cut

    December 16, 20259 Views

    What is Fine-Tuning? Your Ultimate Guide to Tailoring AI Models in 2025

    October 14, 20259 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram

    Subscribe to Updates

    Get the latest tech news from tastytech.

    About Us
    About Us

    TastyTech.in brings you the latest AI, tech news, cybersecurity tips, and gadget insights all in one place. Stay informed, stay secure, and stay ahead with us!

    Most Popular

    BMW Will Put eFuel In Cars Made In Germany From 2028

    October 14, 202511 Views

    Best Sonic Lego Deals – Dr. Eggman’s Drillster Gets Big Price Cut

    December 16, 20259 Views

    What is Fine-Tuning? Your Ultimate Guide to Tailoring AI Models in 2025

    October 14, 20259 Views

    Subscribe to Updates

    Get the latest news from tastytech.

    Facebook X (Twitter) Instagram Pinterest
    • Homepage
    • About Us
    • Contact Us
    • Privacy Policy
    © 2026 TastyTech. Designed by TastyTech.

    Type above and press Enter to search. Press Esc to cancel.

    Ad Blocker Enabled!
    Ad Blocker Enabled!
    Our website is made possible by displaying online advertisements to our visitors. Please support us by disabling your Ad Blocker.